Benefits of Auditory Training for Aided Listening by Older Adults

Judy R. Dubno
Department of Otolaryngology-Head and Neck Surgery
Medical University of South Carolina
Charleston, South Carolina

Work supported by
NIH/NIDCD
Outline

• Overview of auditory training
• Speech-perception training programs for older adults who use hearing aids
• Preliminary results with two training programs
• Conclusions
• Future directions and needs
Background

- Early training programs designed for children with severe hearing loss
- Newer training programs target older adults who use hearing aids
 - More moderate hearing loss
 - Higher level deficits?
 - Age-related cognitive declines?
- May limit effectiveness of interventions that focus solely on improving audibility
Hearing Aid Benefits and Limitations

- Speech recognition in quiet:
 - Older adults need increased speech audibility
 - Hearing aids improve audibility in quiet
Hearing Aid Benefits and Limitations

- Speech recognition in noise:
 - Older adults need improved signal-to-noise ratios (SNR)
 - Hearing aids do not significantly improve SNR for speech in noisy environments
How to Improve the SNR?

• Use technology
 • FM systems
 • Noise reduction circuits
 • Directional microphones

• When technology fails, train the listener to use available speech information
 • Speech reading
 • Auditory training
 • Cognitive training?
Effectiveness of Auditory Training

- Improvement on the trained task
- Generalize to improvements for:
 - Novel speech materials
 - Novel talkers
 - Novel competing messages
 - Other auditory measures
 - Self-report communication benefits
 - Non-auditory measures beyond communication
- Retention of improvements after training ends
- Compliance and engagement
Effectiveness of Auditory Training

• Systematic review (Sweetow and Palmer, 2005)
 • Individualized training for adults with hearing aids
 • Little evidence for effectiveness outside clinical environment
 • Some evidence to support efficacy

• Meta analysis (Chisolm and Arnold, 2012)
 • Included studies of systematic review + more recent
 • Individual studies have small effects sizes
 • “Equivocal” or “suggestive” benefit
 • Small, but reliable benefit for short-term improvement
Effectiveness of Auditory Training

- Systematic review (Henshaw and Ferguson, 2013)
 - Individual computer-based auditory training
 - 13 studies - with or without hearing aids
 - Improvements on trained task, with generalization
 - Improvements small and not robust
 - “Published evidence...cannot be reliably used to guide intervention at this time”
 - Need for high-quality evidence of efficacy of training
Effectiveness of Auditory Training

- Other advancements
 - Auditory and cognitive skills, communication strategies
 - Physiological evidence to study mechanisms
 - New programs for older adult hearing-aid users
 - CASPER (Boothroyd, 2010)
 - Read My Quips (Levitt et al., 2009)
 - CAST (Fu and Galvin, 2007)
Speech-Perception Training Programs

• Stimuli
 • Individual sounds (consonants, vowels, clusters)
 • Commonly used, meaningful words in isolation
 • Words in phrases or sentences with context

• Realistic listening environments
 • For training and testing
 • Multiple talkers
 • Listening with competing sounds
 • Speech-like, fluctuating backgrounds
Speech-Perception Training Programs

• Assure optimal audibility
 • Spectral shaping of speech and competition
 • Trainees use their own hearing aids

• Newer technology via computer
 • Automated presentation and scoring
 • Closed-set format / touchscreen monitor
 • Adjustable, customized training paradigms
 • Extended durations of training
 • Adaptable to home-based training
Speech-Perception Training Programs

• Displays and feedback
 • Auditory only
 • Auditory + video + visual/orthographic
 • Visual word form remaps degraded phonological representations (auditory word form) through cross-modal feedback

• More emphasis on roles of
 • Comprehension
 • Contextual information
 • Cognitive function
Speech-Perception Training Program

• Indiana University (IU) Word-Based Training
Speech-Perception Training Program

- Indiana University (IU) Word-Based Training
 - Key findings:
 - 20%+ increase for trained words and phrases
 - Generalized to sentences / novel talkers
 - Greater benefit with auditory + visual feedback
 - Some benefit retained after 6 months

After Burk et al. (2006)
New Study - IU Training

• New investigators and laboratory outside IU to replicate training outcomes for communication
• Well-matched control group of older adults
• Expanded cognitive battery
• Additional training outcomes
 • Physiology (pupillometry)
 • Neurobiology (functional neuroimaging)
MUSC Participants

- Training group (trained 2-4 times weekly)
 - N = 14 (6 females)
 - Mean age = 71.1 Range = 61-85

- Control group (contacted by phone weekly)
 - N = 15 (6 females)
 - Mean age = 69.6 Range = 60-88

- Matched for age, gender, high-frequency hearing loss, test ear, handedness, cognitive function
- No experience with hearing aids
Audiograms and Spectral Shaping

- Spectral shaping to achieve ≥20 dB SL through 3-4 kHz
- To replicate a well-fit hearing aid
- Listen monaural (earphone)
Cognitive Battery

<table>
<thead>
<tr>
<th>Cognitive Domain</th>
<th>Neuropsychological Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Intelligence</td>
<td>WASI</td>
</tr>
<tr>
<td>Attention/Executive Function</td>
<td>Connections Test, Continuous Performance Test, Visual Search & Attention Task, WJ-III Numbers Reversed, WMS III Abbreviated</td>
</tr>
<tr>
<td>General Language</td>
<td>WJ-III Picture Vocabulary</td>
</tr>
<tr>
<td>Phonological Processing</td>
<td>WJ-III Sound Blending, WJ-III Incomplete Words</td>
</tr>
</tbody>
</table>
Procedures - Training Group

- **Train** (Closed Set)
 - 600 frequently occurring words (4 talkers)
 - 94 frequent 4-5 word phrases (4 talkers)

- Speech-shaped fluctuating noise (2-talker ICRA)

- SNR set based on pre-training open set word recognition, to avoid floor and ceiling

- Self-assessment of task load (listening effort) after each training session
Auditory and visual/orthographic display and feedback
Press the red and green buttons to hear the words. Press OK to continue.

<table>
<thead>
<tr>
<th>AIR</th>
<th>HANDS</th>
<th>OLD</th>
<th>USING</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMOUNT</td>
<td>HER</td>
<td>ORDER</td>
<td>WAYS</td>
<td></td>
</tr>
<tr>
<td>ASK</td>
<td>HIGH</td>
<td>OUR</td>
<td>WHERE</td>
<td></td>
</tr>
<tr>
<td>BED</td>
<td>HIS</td>
<td>OWN</td>
<td>WHITE</td>
<td></td>
</tr>
<tr>
<td>BLUE</td>
<td>ITSELF</td>
<td>PRESIDENT</td>
<td>WOMAN</td>
<td></td>
</tr>
<tr>
<td>BRING</td>
<td>KINDS</td>
<td>PUT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BUILT</td>
<td>KNOW</td>
<td>READING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CANNOT</td>
<td>LESS</td>
<td>SEEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLASS</td>
<td>LET</td>
<td>SHOULD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAR</td>
<td>LITTLE</td>
<td>SHOWS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIELD</td>
<td>LOT</td>
<td>SIDE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOUND</td>
<td>MAKE</td>
<td>TELL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FREE</td>
<td>MEANS</td>
<td>THOSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GETTING</td>
<td>MOVED</td>
<td>THROUGH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GOVERNMENT</td>
<td>NOW</td>
<td>TYPE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Presented

Incorrect selection
Procedures - Training and Control

- **Pre-Test (Open Set)**
 - 200 easy training words (50 words x 4 talkers)
 - 94 training phrases (4 talkers)
 - 200 VAST Sentences (50 sentences x 4 talkers)
 - 20 CID Everyday Sentences (1 talker) [CID1]

- **Post-Test (Open Set)**
 - Trained words and phrases
 - Untrained VAST and CID sentences
 - + 20 novel CID Sentences [CID2]
 - Same ICRA noise and SNR
Individual Results - During Training

- First to last: Changes during training
- Word recognition improved by 18.2 rau (11.4 - 40.8 rau)

Total training ~33 hours
Individual Results - During Training

• Significant improvements continued through 96 blocks (12 sessions)

Total training ~33 hours
Individual Results - During Training

- Rates of improvement
 - Scores for each training day
 - Fit by growth curve analysis
 - Darker colors are older
 - Circles are changes in rate
 - Trainees with better scores finished more quickly
 - Longer training times → more constant rate of improvement
 - Largest benefit about halfway (blue circles)
 - Most continued to benefit until final sessions (red circles)
Group - Pre-test vs. Post-test

- Significant **trainee** improvement in open-set recognition of trained words and phrases in noise
- Significant generalization to untrained sentences/talkers
- Replicates IU results
- No association with cognitive function
- No significant improvement for **control** group
Individual - Pre-test vs. Post-test

- All trainees improved significantly for trained words

![Graphs showing change in score for training and control groups. The training group shows a significant increase in scores, while the control group shows little to no change.](image)
Individual - Pre-test vs. Post-test

- Most trainees improved significantly for trained phrases
Individual - Pre-test vs. Post-test

- Most trainees improved significantly for untrained sentences (same noise, same talkers as training)
Individual - Pre-test vs. Post-test

- Fewest trainees improved significantly for untrained sentences (same noise, but novel talker)
Additional Training Outcomes

• Quantify benefits beyond communication
 • Attentional demands
 • Listening effort
 • Effects of task difficulty

• Pupillometry

• Neural systems supporting speech recognition?
 • Changes following training-related improvements

• Functional neuroimaging (fMRI)
Pupillometry - Measure of Task Difficulty

- Listening in challenging environments exerts mental and physical demands
 - With limited or degraded speech information
 - For older adults
- How easily or effortfully is a listening task accomplished?
- Effects of training?
- Objectively monitor changes in cognitive effort through measures of pupil diameter

Piquando et al. (2010); Zekveld et al. (2010, 2011); Kuchinsky et al. (2013, 2014)
Results - Pupillometry

- Before training (N=21)
- Same shaping, ear, words, noise
- Easier vs. harder SNR
- Pupil response significantly affected by listening difficulty, even for correct trials

Kuchinsky et al. (2013)
Results - Pupillometry

- Training group: Pre vs. Post
- Control group: First vs. Last

- Significant post-training changes in pupil response even for correct trials
- No significant change for control group
Neural systems underlying successful training

• fMRI task
 • Inside scanner
 • Listen to training words (sparse sampling)
 • Press a button to indicate if word is recognized
Preliminary Results - Neuroimaging

- Following training, increased activity in attention regions important for
 - Orienting to sensory input
 - Evaluating performance
 - MFG = middle frontal gyrus
 - SPL = superior parietal lobule
Preliminary Results

- Does not always relate to communication

- Pupil response shift suggests training reduced attentional demand
- Does not appear to relate to training improvement

- Increased engagement of neural attention systems for sensory input
- May relate to training improvement
Speech Perception Assessment & Training System (SPATS)

- JD Miller, CS Watson, and colleagues
- Multi-site study
 - 2 initial sites (MUSC, Portland VA/OHSU - MR Leek)
 - 4 new sites (Hospital, University Clinics)
- 150 adults training with their own hearing aids
- 75 adults in active control group (story listening)
SPATS - Multi-site Study

- Benefit of extended training (~30 hours) to hearing-aid use and satisfaction
- Benefit of syllable training to sentences
- Predict training benefit from
 - Pre-training speech recognition
 - Spectral and temporal resolution
 - General cognitive abilities
 - Linguistic skills
- Retention
- Engagement
SPATS Participants

- **Training group**
 - N = 24 (4 females)
 - Mean age = 71.3
 - Age range = 54-86
- **Control group**
 - N = 12 (4 females)
 - Mean age = 72.3
 - Age range = 59-82
- Trained and tested with own hearing aids
- Preliminary data - study ongoing
Additional Assessments

- Dementia, reading level, vision screenings
- Spectral and temporal resolution (non-speech)
- Cognitive function
 - Matrix reasoning
 - Vocabulary
 - Working memory
 - Perception of visually fragmented sentences
- Hearing-aid satisfaction
- Self-assessment of task load/listening effort (MUSC)
- Pupillometry (MUSC)
- Exit interview
SPATS

- **Train** (Closed set)
 - Word onsets, Medial vowels, Word endings
 - 4-7 word sentences (corpus of 1,000)
 - 8-12 talkers
 - Quiet and multi-talker babble
 - 15 hrs syllables + 15 hours sentences (3 orders)
• **Train:** Closed set sentences in babble
 • SNR varies from -10 to +10 dB
 • Encourages use of auditory cues and context
 • Score based on errors and “temporal penalties”
• **Train:** Closed set sentences in babble
 - SNR varies from -10 to +10 dB
 - Encourages use of auditory cues and context
 - Score based on errors and “temporal penalties”

Diagram: SPATS Sentence Recognition Practice

- No response within 5 sec
- Incorrect selections: Sentence replayed
- Correct selection

Example Sentence:

“It has been a great year”
SPATS - Testing

- Pre-Test and Post-Test
 - Trained Word onsets, Medial vowels, Word endings
 - Similar sounds, different response format

SPATS QUICK TEST
Perception of Syllable Constituents

Onset: “new”

Click on what you heard.

SPATS QUICK TEST
Perception of Syllable Constituents

Ending: “birds”

Click on what you heard.
SPATS - Testing

- Pre-Test and Post-Test
 - Untrained words and sentences in babble
 - Words in Noise Test (WIN) - SNR
 - Quick Speech in Noise Test (QuickSIN) - SNR
 - Connected Speech Test - Audio only (CST-A)
 - Connected Speech Test - Audiovisual (CST-AV)
 - Different response formats
 - Different competing messages
 - Different listening strategies
SPATS Results - During Training

- First to last: Changes during training
- Syllable recognition improved by ~6 rau
- Sentence recognition improved by 10 rau

Total training ~30 hours
SPATS Results - During Training

- Self-report ratings of task load obtained after each training session
- Ratings decline for effort and frustration
- Ratings asymptote for mental demand
SPATS Results - Training

- Most trainees improved significantly for trained sentences
SPATS Results - Training

- Most trainees improved significantly for trained syllables
SPATS Results - Training

- Fewer trainees improved significantly for syllables in babble
Group - Pre-test vs. Post-test

- Significant improvement in syllable recognition
Individual - Pre-test vs. Post-test

- Improvement for trainees for syllables (rank order)
Individual - Pre-test vs. Post-test

- Some trainees improved significantly on word onsets
Individual - Pre-test vs. Post-test

- Some trainees improved significantly for medial vowels
Individual - Pre-test vs. Post-test

- Most **trainees** improved significantly for word endings
Group - Pre-test vs. Post-test

- No significant improvement for untrained sentences
- Novel sentences, talkers, babble, listening strategy

![Graph showing comparison between training and control groups for CST with and without audio and visual cues.](image-url)
Group - Pre-test vs. Post-test

- Effects of pre-test score?
- For trainees, higher pre-test scores predict less change
Group - Pre-test vs. Post-test

- Small trainee improvement in SNR for untrained words and sentences ($p=0.08$)
- Novel sentences, talkers, babble, listening strategy
Predicting Training Benefit

- Degree of hearing loss
- Spectral and temporal resolution (non-speech)
- Cognitive function
- Self-report mental and physical demand
- Pupillometry (ongoing)

- Hearing aid characteristics
 - Amount of gain
 - Match to target
 - Weighted aided response
Predicting Training Benefit

- For trained syllable onsets
- Larger aided response predicts more improvement with training
- Aided response
 - Not related to degree of hearing loss
 - Strongly related to how well response matches targets
- More training benefit with a “well-fit” hearing aid
Predicting Training Benefit

- Aided response does **not** predict training benefit for
 - Medial vowels
 - Syllable endings
 - Sentences
 - Untrained words and sentences in babble
Conclusions

• Significant improvements in open-set recognition of trained sounds, words, phrases, sentences
• Some generalization to untrained stimuli
• Generalization may vary with differences in
 • Task
 • Competing noise
 • Listening strategy
Conclusions

- Large individual differences in training benefit
- Good pre-training performance may limit benefit
- Listening effort may decline with training
- No association of training benefit with cognitive function
- Additional predictors of training benefit to be determined
Future Needs

• High-level evidence needed to support effectiveness of auditory training for older adults as a supplement to aided listening in noise
 • Predict who will benefit
 • Assess compliance and engagement, especially for home-based training
 • Discover benefits beyond communication
• Increase access with new tools
 • Home-based systems
 • Tablet platforms
 • Mobile apps for download
Acknowledgements

MUSC
Jayne B. Ahlstrom
Stefanie E. Kuchinsky
Mark A. Eckert
Stephanie L. Cute
Will Bologna
Scott Davis
Emily Franko-Tobin
Sara Fultz
Sarah Hall
Mary Ashley Mercer
Rebekkah Merrell
Gayla Poling
Jenny West

Indiana University
Larry E. Humes

Portland VA/OHSU
Marjorie R. Leek
Keri O’Connell
Heather Belding

CDT
Charles S. Watson
James D. Miller
Gary R. Kidd
Roy Sillings

Supported by
NIH/NIDCD
Hearing Health Foundation
Medical University of South Carolina
Indiana University
For more information:

dubnojr@musc.edu