Speech Recognition Across the Lifespan: Middle Aged to Older Adults

Judy R. Dubno
Department of Otolaryngology-Head and Neck Surgery
Medical University of South Carolina
Charleston, South Carolina

Work supported by
NIH/NIDCD
<table>
<thead>
<tr>
<th>All Ages</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Orthopedic impairments</td>
<td>Sinusitis</td>
</tr>
<tr>
<td></td>
<td>Sinusitis</td>
<td>Arthritis</td>
</tr>
<tr>
<td></td>
<td>Hearing impairments</td>
<td>Orthopedic impairments</td>
</tr>
<tr>
<td></td>
<td>Hypertension</td>
<td>Hypertension</td>
</tr>
<tr>
<td></td>
<td>Hay Fever</td>
<td>Hay Fever</td>
</tr>
<tr>
<td>0–17</td>
<td>Asthma</td>
<td>Sinusitis</td>
</tr>
<tr>
<td></td>
<td>Hay Fever</td>
<td>Asthma</td>
</tr>
<tr>
<td></td>
<td>Sinusitis</td>
<td>Hay Fever</td>
</tr>
<tr>
<td></td>
<td>Bronchitis</td>
<td>Bronchitis</td>
</tr>
<tr>
<td></td>
<td>Dermatitis</td>
<td>Dermatitis</td>
</tr>
<tr>
<td>18–44</td>
<td>Orthopedic impairments</td>
<td>Sinusitis</td>
</tr>
<tr>
<td></td>
<td>Sinusitis</td>
<td>Orthopedic impairments</td>
</tr>
<tr>
<td></td>
<td>Hay Fever</td>
<td>Hay Fever</td>
</tr>
<tr>
<td></td>
<td>Hearing impairments</td>
<td>Migraine</td>
</tr>
<tr>
<td></td>
<td>Hypertension</td>
<td>Asthma</td>
</tr>
<tr>
<td>45–74</td>
<td>Hypertension</td>
<td>Arthritis</td>
</tr>
<tr>
<td></td>
<td>Arthritis</td>
<td>Hypertension</td>
</tr>
<tr>
<td></td>
<td>Hearing impairments</td>
<td>Sinusitis</td>
</tr>
<tr>
<td></td>
<td>Orthopedic impairments</td>
<td>Orthopedic impairments</td>
</tr>
<tr>
<td></td>
<td>Heart Disease</td>
<td>Hay Fever</td>
</tr>
<tr>
<td>75+</td>
<td>Hearing impairments</td>
<td>Arthritis</td>
</tr>
<tr>
<td></td>
<td>Arthritis</td>
<td>Hypertension</td>
</tr>
<tr>
<td></td>
<td>Heart Disease</td>
<td>Hearing impairments</td>
</tr>
<tr>
<td></td>
<td>Hypertension</td>
<td>Heart Disease</td>
</tr>
<tr>
<td></td>
<td>Cataracts</td>
<td>Cataracts</td>
</tr>
</tbody>
</table>

Source: National Academy on an Aging Society analysis of National Health Interview Survey data.

- ~17% of American adults report some degree of hearing loss (36 million)
- 75% are over 55 years of age
- One of the most common chronic conditions of aging (first for older males)
- Prevalence and severity will increase as the population ages
- Hearing impairment is also a common chronic condition in middle age
The Aging Auditory System

- Damaging effects to the periphery from a lifetime of environmental exposures and disease processes
- Naturally occurring age-related changes to the auditory periphery
 - Anatomic, physiologic, neurochemical deficits
 - Reduced detection for low-level signals (hearing loss)
 - Impaired function for higher level signals
 - Complex signal processing
 - Speech understanding
The Aging Auditory System

- Auditory periphery delivers degraded signal representations for processing by aging central auditory pathways and cortex

- Cognitive declines
 - Working memory, executive function
 - Attention, processing speed
 - Reduced ability to suppress irrelevant information
 - Inadequate compensation strategies

- Imposes increased demands on an aging brain with already limited resources and loss of inhibition
The Aging Auditory System

• Multiple risk factors (aging, noise, drugs, disease, comorbid conditions...)

• In older humans, how to disentangle the effects to:
 • allocate to each risk factor
 • determine contribution of aging alone
 • identify promising targets for intervention
 • develop strategies to prevent or delay onset of age-related declines

• Longitudinal studies across the lifespan can identify risk factors and estimate age-relate changes and interactions
Longitudinal Study Design

• Advantages
 • Participants act as their own controls
 • Minimizes effects of uncontrollable factors
 • noise history
 • occupation
 • nutrition
 • pre-existing health conditions
 • Measures age-related changes for groups and individuals (cross-sectional designs - groups only)
Longitudinal Study Design

- Disadvantages
 - Data collection takes many years
 - Must retain subjects for long periods of time
 - Recruitment more difficult
 - Selective attrition
 - For longitudinal studies of aging
 - Healthier or higher performing subjects may remain in the study longer
 - High cost
Longitudinal Studies of Speech Recognition

• Very few studies
• Limitations
 • Small sample sizes
 • Not population-based samples
 • Narrow age ranges (not including middle age)
 • Short follow-up periods
 • Did not include measures of speech in noise
 • Did not control for effects of age-related declines in detection thresholds
Longitudinal Studies of Speech Recognition

- Dubno et al. (2008)
 - Initial analysis of same cohort
 - Different statistical procedure
 - Declines greater than predicted from thresholds

- Pronk et al. (2013)
 - Longitudinal Aging Study of Amsterdam cohort
 - Speech reception threshold in noise (SRT_n)
 - Health, environmental, cognitive variables
 - Declines in SRT related only to processing speed
 - No control for threshold changes over time
MUSC Longitudinal Study

- Peripheral and central auditory function
 - Detection of pure tones (0.25 - 8.0 kHz)
 - Detection of high frequencies (10 - 18 kHz)
- Middle ear function
- Cochlear function (OAEs, masking)
- Auditory brainstem responses
- Understanding simple and complex speech
 - In quiet and noise
 - Single words and sentences
 - Using one and two ears (not included here)
Human Subject Database (1988-)

- N = 1,495 (participants with any data)
- N = 444 (active participants)
- 69% age 60 and older
- 60% female
- 29% racial/ethnic minority

Current analysis (40 - 96 years)
- N = 1,220 (54.5% female)
Analysis Plan

• Estimate longitudinal changes in pure-tone thresholds, as measured during participants’ time in the study

• Estimate longitudinal changes in speech recognition in quiet and babble
 • Control for effects of changes in thresholds over the same time period
 • Control for effects of other covariates
Analysis Plan

- To assess changes in pure-tone thresholds over time
 - Multivariable Generalized Linear Repeated Mixed Model
 - Accounts for correlations over time within participants
 - Allows for different numbers of repeated measures, so all thresholds contribute (no missing cases)
 - Gender and ear were added to the model as covariates

- Current analysis: 16,027 audiograms from 2,433 ears
Pure-tone Thresholds

- Consistent with proposed audiometric phenotypes (Dubno et al., 2013)

- Metabolic Phenotype (Females)
 - ↓ EP (power supply)
 - ↓ cochlear amplifier gain
 - ↓ nonlinearities, but maintains

- Sensory Phenotype (Males)
 - Higher thresholds
 - Loss of sensory cells
 - Loss of cochlear amplifier
 - Loss of nonlinearities
• Rates of threshold increase averaged 0.4 - 0.8 dB/yr (4-8 dB/decade)
• Faster rates of increase for males than females at 2.0 - 8.0 kHz
Longitudinal Changes in Speech Recognition

- Speech-recognition threshold (spondees)
- Word recognition in quiet (NU-6)
- Maximum word recognition (NU-6)
- Key word recognition in sentences in babble (Speech Perception in Noise Test, SPIN)
- Binaural word recognition (SSW)
Word Recognition in Quiet

- NU#6 word lists
- Monosyllabic CVC words
 - Examples: back, good, home, sell, take

- Monaural, ear each tested, with audiogram
- 30-40 dB SL re: SRT

- Measured at each visit, yearly or more often
- Different lists used for each ear at each visit
Word Recognition in Quiet

- 16,027 scores from 2,435 ears
- 1-28 visits per participant (audiogram and scores)

Baseline age:
- Mean 67.1 yrs (±9.4 yrs)
- Range 40-96 yrs

Time in study:
- Mean 4.4 yrs (±5.4 yrs)
- Range 0-25 yrs
Key Words in Sentences in Babble

- Speech Perception in Noise Test (SPIN) (Kalikow et al., 1977)
- High context: “The watchdog gave a warning growl”
- Low context: “I had not thought about the growl”

- Monaural, each ear tested, with audiogram
- Sentences at 50 dB re: babble threshold (Bilger, 1984)
- Signal-to-babble ratio +8 dB

- Measured every 2-3 years
- Different lists used for each ear at each visit
Key Words in Sentences in Babble

- 3,587 scores from 1,790 ears
- 1-8 visits per participant (audiogram and scores)

Baseline age:
- Mean 67.6 yrs (±8.1 yrs)
- Range 40-89 yrs

Time in study:
- Mean 3.6 yrs (±4.7 yrs)
- Range 0-23 yrs
Data Analysis

- To assess changes in speech recognition over time
 - Multivariable Generalized Linear Repeated Mixed Model
 - Accounts for correlations over time within participants
 - Allows for different numbers of repeated measures, so all scores contribute (no missing cases)

- Gender and ear added to the model as covariates
- Covariates added to account for effects of changes over time in:
 - Pure-tone thresholds (0.25-4.0 kHz; 6-8 kHz ns)
 - Speech levels
 - Participant Age
Word Recognition in Quiet

- For every 1 year of aging, scores declined by 1.32 rau \((p<0.0001)\)

- While controlling for threshold increases over same period, scores declined by 0.24 rau for each year of aging \((p<0.0001)\)
Word Recognition in Quiet

- Rates of decline did not differ for Males and Females ($p>0.05$)
- Declines accelerate near age 65-70
- Scores for Males were poorer after controlling for gender differences in thresholds ($p=0.0125$)
- Related to their different phenotypes?
- More neural loss for males?
Key Words in Low-Context Sentences

- For every 1 year of aging, scores declined by 0.72 rau ($p<0.0001$)
- While controlling for threshold increases over same period, scores declined by 0.11 rau for each year of aging ($p<0.0027$), with no gender difference
Key Words in High-Context Sentences

- For every 1 year of aging, scores declined by 0.44 rau ($p<0.0001$)
- While controlling for threshold increases, scores remained constant (0.04 rau/yr, ns)
- Declines faster for Males than females (Males: 0.13 rau, $p=0.016$)
Key Words in Sentences in Babble

- In contrast to scores in quiet, no gender difference after threshold differences controlled ($p > 0.05$)

- Declines accelerate near age 75-80

- Differences related to task (word/sentence or quiet/babble) or performance levels?
Contribution of Thresholds

- Each dB increase in threshold over time contributes 0.10-0.45 rau to the decline in score over time
- Threshold increases at 2.0 kHz are the largest contributor
- Some differences for three tasks
Next Steps

- Include as covariates measures of:
 - Auditory function, audiometric phenotype, self-assessments
 - Cognitive function
 - Environmental factors (noise, drug exposures)
 - Demographic factors
 - Health conditions

- Include data from SSW (binaural speech)

- Confirm with biomarkers
 - Neuroimaging
 - Genetics
 - Otopathology from human temporal bones
Conclusions - Pure-tone Thresholds

- Pure-tone thresholds increased with increasing age by an average of 0.4-0.8 dB/year (4-8 dB/decade)
- Slower overall rates of threshold increase for this sample (<1.0 dB/year) may reflect inclusion of middle-aged adults
Conclusions - Word Recognition in Quiet

• Word recognition in quiet declines with age, even after accounting for reductions in audible speech due to poorer hearing
• Rates of decline were similar for males and females, but scores were poorer for males
• May relate to differences in etiology (metabolic vs. sensory phenotypes for females vs. males)
Conclusions - Key Word Recognition in Babble

• Key word recognition in babble declined slightly with age or remained constant (with context)
• No gender differences
• Key word recognition in sentences preserved to older ages than for monosyllabic word recognition in quiet
• Threshold increases are large contributors to speech recognition declines, especially in mid frequencies, and are larger than age alone
Conclusions

- Gender differences: social or biological construct
 - Relate to differences in environmental exposures, which lead to differences in age-related pathologies?
 - Due to underlying gender-related neurobiological mechanisms?
- Although answers are unclear, gender remains a useful clinical marker for age-related hearing loss
Acknowledgements

Jayne B. Ahlstrom
Mark A. Eckert
Kelly C. Harris
Hainan Lang
Lois J. Matthews
John H. Mills
Richard A. Schmiedt
Bradley A. Schulte
Annie Simpson

and many
Graduate Students
Postdoctoral Fellows
Research Audiologists

Supported by
National Institutes of Health (US)

Medical University of South Carolina
Departments of
Otolaryngology-Head and Neck Surgery
Pathology and Laboratory Medicine
For more information:

dubnojr@musc.edu